动态图形表示学习是具有广泛应用程序的重要任务。以前关于动态图形学习的方法通常对嘈杂的图形信息(如缺失或虚假连接)敏感,可以产生退化的性能和泛化。为了克服这一挑战,我们提出了一种基于变换器的动态图表学习方法,命名为动态图形变换器(DGT),带有空间 - 时间编码,以有效地学习图形拓扑并捕获隐式链接。为了提高泛化能力,我们介绍了两个补充自我监督的预训练任务,并表明共同优化了两种预训练任务,通过信息理论分析导致较小的贝叶斯错误率。我们还提出了一个时间联盟图形结构和目标 - 上下文节点采样策略,用于高效和可扩展的培训。与现实世界数据集的广泛实验说明了与几个最先进的基线相比,DGT呈现出优异的性能。
translated by 谷歌翻译
尽管图表神经网络(GNNS)的最近成功,但大图上的培训GNN仍然具有挑战性。现有服务器的有限资源容量,图中节点之间的依赖关系以及由于集中存储和模型学习导致的隐私问题刺激了用于GNN训练的有效分布式算法的需要。然而,现有的分布式GNN训练方法强加过度的通信成本或妨碍其可扩展性的大存储器开销。为了克服这些问题,我们提出了一种名为$ \ text {{locally,正确的全球}} $(llcg)的通信有效的分布式GNN培训技术。为了减少通信和内存开销,LLCG中的每个本地计算机首先通过忽略不同机器之间的节点之间的依赖性在其本地数据上列出GNN,然后将本地训练的模型发送到服务器以获取周期性模型平均。但是,忽略节点依赖性可能导致显着的性能下降。要解决性能下降,我们建议在服务器上应用$ \ text {{{global server校正}} $以优化本地学习的模型。我们严格地分析了具有用于训练GNN的周期性模型的分布式方法的收敛性,并且显示了天真地应用周期模型平均但忽略节点之间的依赖性将受到不可缩小的残余错误。然而,通过利用所提出的全局校正来避免收敛速度,可以消除这种剩余误差。对现实世界数据集的广泛实验表明,LLCG可以显着提高效率而不会伤害性能。
translated by 谷歌翻译
图表卷积网络(GCNS)在各种半监督节点分类任务中取得了令人印象深刻的实证进步。尽管取得了巨大的成功,但在大型图形上培训GCNS遭受了计算和内存问题。规避这些障碍的潜在路径是基于采样的方法,其中在每个层处采样节点的子集。虽然最近的研究已经证明了基于采样的方法的有效性,但这些作品缺乏在现实环境下的理论融合担保,并且不能完全利用优化期间演出参数的信息。在本文中,我们描述并分析了一般的双差异减少模式,可以在内存预算下加速任何采样方法。所提出的模式的激励推动是仔细分析采样方法的差异,其中示出了诱导方差可以在前进传播期间分解为节点嵌入近似方差(Zeroth阶差异)(第一 - 顺序变化)在后向传播期间。理论上,从理论上分析所提出的架构的融合,并显示它享有$ \ Mathcal {O}(1 / T)$收敛率。我们通过将建议的模式集成在不同的采样方法中并将其应用于不同的大型实际图形来补充我们的理论结果。
translated by 谷歌翻译
KL-regularized reinforcement learning from expert demonstrations has proved successful in improving the sample efficiency of deep reinforcement learning algorithms, allowing them to be applied to challenging physical real-world tasks. However, we show that KL-regularized reinforcement learning with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics that can lead to slow, unstable, and suboptimal online learning. We show empirically that the pathology occurs for commonly chosen behavioral policy classes and demonstrate its impact on sample efficiency and online policy performance. Finally, we show that the pathology can be remedied by non-parametric behavioral reference policies and that this allows KL-regularized reinforcement learning to significantly outperform state-of-the-art approaches on a variety of challenging locomotion and dexterous hand manipulation tasks.
translated by 谷歌翻译
In this work, we propose a new approach that combines data from multiple sensors for reliable obstacle avoidance. The sensors include two depth cameras and a LiDAR arranged so that they can capture the whole 3D area in front of the robot and a 2D slide around it. To fuse the data from these sensors, we first use an external camera as a reference to combine data from two depth cameras. A projection technique is then introduced to convert the 3D point cloud data of the cameras to its 2D correspondence. An obstacle avoidance algorithm is then developed based on the dynamic window approach. A number of experiments have been conducted to evaluate our proposed approach. The results show that the robot can effectively avoid static and dynamic obstacles of different shapes and sizes in different environments.
translated by 谷歌翻译
Salient object detection (SOD) aims to determine the most visually attractive objects in an image. With the development of virtual reality technology, 360{\deg} omnidirectional image has been widely used, but the SOD task in 360{\deg} omnidirectional image is seldom studied due to its severe distortions and complex scenes. In this paper, we propose a Multi-Projection Fusion and Refinement Network (MPFR-Net) to detect the salient objects in 360{\deg} omnidirectional image. Different from the existing methods, the equirectangular projection image and four corresponding cube-unfolding images are embedded into the network simultaneously as inputs, where the cube-unfolding images not only provide supplementary information for equirectangular projection image, but also ensure the object integrity of the cube-map projection. In order to make full use of these two projection modes, a Dynamic Weighting Fusion (DWF) module is designed to adaptively integrate the features of different projections in a complementary and dynamic manner from the perspective of inter and intra features. Furthermore, in order to fully explore the way of interaction between encoder and decoder features, a Filtration and Refinement (FR) module is designed to suppress the redundant information between the feature itself and the feature. Experimental results on two omnidirectional datasets demonstrate that the proposed approach outperforms the state-of-the-art methods both qualitatively and quantitatively.
translated by 谷歌翻译
Most recent studies on neural constituency parsing focus on encoder structures, while few developments are devoted to decoders. Previous research has demonstrated that probabilistic statistical methods based on syntactic rules are particularly effective in constituency parsing, whereas syntactic rules are not used during the training of neural models in prior work probably due to their enormous computation requirements. In this paper, we first implement a fast CKY decoding procedure harnessing GPU acceleration, based on which we further derive a syntactic rule-based (rule-constrained) CKY decoding. In the experiments, our method obtains 95.89 and 92.52 F1 on the datasets of PTB and CTB respectively, which shows significant improvements compared with previous approaches. Besides, our parser achieves strong and competitive cross-domain performance in zero-shot settings.
translated by 谷歌翻译
This paper aims to improve the Warping Planer Object Detection Network (WPOD-Net) using feature engineering to increase accuracy. What problems are solved using the Warping Object Detection Network using feature engineering? More specifically, we think that it makes sense to add knowledge about edges in the image to enhance the information for determining the license plate contour of the original WPOD-Net model. The Sobel filter has been selected experimentally and acts as a Convolutional Neural Network layer, the edge information is combined with the old information of the original network to create the final embedding vector. The proposed model was compared with the original model on a set of data that we collected for evaluation. The results are evaluated through the Quadrilateral Intersection over Union value and demonstrate that the model has a significant improvement in performance.
translated by 谷歌翻译
Semantic communication (SemCom) and edge computing are two disruptive solutions to address emerging requirements of huge data communication, bandwidth efficiency and low latency data processing in Metaverse. However, edge computing resources are often provided by computing service providers and thus it is essential to design appealingly incentive mechanisms for the provision of limited resources. Deep learning (DL)- based auction has recently proposed as an incentive mechanism that maximizes the revenue while holding important economic properties, i.e., individual rationality and incentive compatibility. Therefore, in this work, we introduce the design of the DLbased auction for the computing resource allocation in SemComenabled Metaverse. First, we briefly introduce the fundamentals and challenges of Metaverse. Second, we present the preliminaries of SemCom and edge computing. Third, we review various incentive mechanisms for edge computing resource trading. Fourth, we present the design of the DL-based auction for edge resource allocation in SemCom-enabled Metaverse. Simulation results demonstrate that the DL-based auction improves the revenue while nearly satisfying the individual rationality and incentive compatibility constraints.
translated by 谷歌翻译
In this paper, we introduce a novel approach for ground plane normal estimation of wheeled vehicles. In practice, the ground plane is dynamically changed due to braking and unstable road surface. As a result, the vehicle pose, especially the pitch angle, is oscillating from subtle to obvious. Thus, estimating ground plane normal is meaningful since it can be encoded to improve the robustness of various autonomous driving tasks (e.g., 3D object detection, road surface reconstruction, and trajectory planning). Our proposed method only uses odometry as input and estimates accurate ground plane normal vectors in real time. Particularly, it fully utilizes the underlying connection between the ego pose odometry (ego-motion) and its nearby ground plane. Built on that, an Invariant Extended Kalman Filter (IEKF) is designed to estimate the normal vector in the sensor's coordinate. Thus, our proposed method is simple yet efficient and supports both camera- and inertial-based odometry algorithms. Its usability and the marked improvement of robustness are validated through multiple experiments on public datasets. For instance, we achieve state-of-the-art accuracy on KITTI dataset with the estimated vector error of 0.39{\deg}. Our code is available at github.com/manymuch/ground_normal_filter.
translated by 谷歌翻译